Tuesday, October 25, 2016
Submit your own News for
inclusion in our Site.
Click here...
Breaking News
Google Raises 3rd Quarter Lobbying But Spending Falls Behind AT&T
Kingston Ships the HyperX Alloy FPS Gaming Keyboard
Portrait Mode Available on iPhone 7 Plus With iOS 10.1
Android Devices Vulnerable To Physical RAM Attack
Nokia Phones To Reborn In India Next Year, Hon Hai to Manufacture Them
New Lenovo Systems Commercial Desktops and Notebooks Are Featuring 7th Generation AMD PRO Processors
Apple Watch Nike+ Arrives Friday, October 28
These Are The New Xbox One S Bundles For This Holiday
Active Discussions
Which of these DVD media are the best, most durable?
How to back up a PS2 DL game
Copy a protected DVD?
roxio issues with xp pro
Help make DVDInfoPro better with dvdinfomantis!!!
menu making
Optiarc AD-7260S review
cdrw trouble
 Home > News > General Computing > IBM Sci...
Last 7 Days News : SU MO TU WE TH FR SA All News

Tuesday, August 14, 2012
IBM Scientists Closer To Using Spintronics in Computing

Aiming to use electron spins for storing, transporting and processing information, researchers from IBM and scientists at ETH Zurich revealed the first-ever direct mapping of the formation of a persistent spin helix in a semiconductor.

Until now, it was unclear whether or not electron spins possessed the capability to preserve the encoded information long enough before rotating. Unveiled in the peer-reviewed journal Nature Physics, scientists from IBM Research and the Solid State Physics Laboratory at ETH Zurich demonstrated that synchronizing electrons extends the spin lifetime of the electron by 30 times to 1.1 nanoseconds - the same time it takes for an existing 1 GHz processor to cycle.

Today's computing technology encodes and processes data by the electrical charge of electrons. However, this technique is limited as the semiconductor dimensions continue to shrink to the point where the flow of electrons can no longer be controlled. Spintronics could surmount this approaching impasse by harnessing the spin of electrons instead of their charge.

This new understanding in spintronics not only gives scientists unprecedented control over the magnetic movements inside devices but also opens new possibilities for creating more energy efficient electronics.

A previously unknown aspect of physics, the scientists observed how electron spins move tens of micrometers in a semiconductor with their orientations synchronously rotating along the path similar to a couple dancing the waltz, the famous Viennese ballroom dance where couples rotate.

Dr. Gian Salis of the Physics of Nanoscale Systems research group at IBM Research - Zurich explains, "If all couples start with the women facing north, after a while the rotating pairs are oriented in different directions. We can now lock the rotation speed of the dancers to the direction they move. This results in a perfect choreography where all the women in a certain area face the same direction. This control and ability to manipulate and observe the spin is an important step in the development of spin-based transistors that are electrically programmable."

How it works

IBM scientists used ultrashort laser pulses to monitor the evolution of thousands of electron spins that were created simultaneously in a very small spot. Atypically, where such spins would randomly rotate and quickly lose their orientation, for the first time, the scientists could observe how these spins arrange neatly into a regular stripe-like pattern, the so-called persistent spin helix.

The concept of locking the spin rotation was originally proposed in theory back in 2003 and since that time some experiments have even found indications of such locking, but until now it had never been directly observed.

IBM scientists imaged the synchronous "waltz" of the electron spins by using a time-resolved scanning microscope technique. The synchronization of the electron spin rotation made it possible to observe the spins travel for more than 10 micrometers or one-hundredth of a millimeter, increasing the possibility to use the spin for processing logical operations, both fast and energy-efficiently.

The reason for the synchronous spin motion is a carefully engineered spin-orbit interaction, a physical mechanism that couples the spin with the motion of the electron. The semiconductor material called gallium arsenide (GaAs) was produced by scientists at ETH Zurich who are known as world experts in growing ultraclean and atomically precise semiconductor structures. GaAs is a III/V semiconductor commonly used in the manufacture of devices such as integrated circuits, infrared light-emitting diodes and highly efficient solar cells.

Transferring spin electronics from the laboratory to the market still remains a major challenge. Spintronics research takes place at very low temperatures at which electron spins interact minimally with the environment. In the case of this particular research, IBM scientists worked at 40 Kelvin.

Fraunhofer Develops Smart Wireless Power Outlets        All News        RIM's BB10 Available For Licensing Soon
Fraunhofer Develops Smart Wireless Power Outlets     General Computing News      Google Plus Gets Verified Accounts

Get RSS feed Easy Print E-Mail this Message

Related News
New IBM Linux Servers Feature POWER8 Chips And NVIDIA NVLink Interconnect Technology
Scientists Imitate the Functionality of Neurons with a Phase-Change Device
IBM's Strategy Seems To Pay Off, Latest Results Show
AT&T and IBM Team to Bring Internet of Things Capabilities to Developers on IBM Cloud
IBM Scientists Discover New Recycling Process to Convert Old Smartphones and CDs into Non-Toxic Plastics
IBM Watson Will Be Trained To Tackle Cybercrime
IBM and SK Holdings C&C Alliance Brings Watson To South Korea
IBM Makes Quantum Computing Available on IBM Cloud
OpenPOWER Foundation Reveals New Servers
IBM, VMWare, To Accelerate Enterprise Hybrid Cloud Adoption
IBM To Buy Truven Health Analytics for $2.6 Billion
Western Digital Buys Storage And Memory Patents From IBM

Most Popular News
Home | News | All News | Reviews | Articles | Guides | Download | Expert Area | Forum | Site Info
Site best viewed at 1024x768+ - CDRINFO.COM 1998-2016 - All rights reserved -
Privacy policy - Contact Us .