Thursday, October 30, 2014
Search
  
Submit your own News for
inclusion in our Site.
Click here...
Breaking News
YouTube Now Supports 60fps Videos
Samsung Brings Gear S to U.S. Next Week
Corsair Introduces Sabre RGB Mice For Gamers
Ubisoft's Assassin's Creed Unity Included with Purchase of Samsung UD590 Monitor or 850 PRO Series SSD
Apple's Tim Cook Declares His Sexual Orientation
Motorola Becomes Part Of Lenovo
US Film Industry Wants To Ban Smartwatches And Smart Glasses From Theaters
MSI Releases The X99S MPower Motherboard
Active Discussions
Copied dvd's say blank in computer only
Made video, won't play back easily
New Features In Firefox 33
updated tests for dvd and cd burners
How to generate lots of different CDs quickly
Yamaha CRW-F1UX
help questions structure DVDR
Questions durability monitor LCD
 Home > News > Digital Cameras > New Chi...
Last 7 Days News : SU MO TU WE TH FR SA All News

Saturday, February 23, 2013
New Chip Cleans Up Flaws In Amateur Photographs


Smartphone snapshots could be instantly converted into professional-looking photographs with just the touch of a button, thanks to a processor chip developed at MIT.

The chip, built by a team at MIT's Microsystems Technology Laboratory and funded by the Foxconn Technology Group, can perform tasks such as creating more realistic or enhanced lighting in a shot without destroying the scene?s ambience, in just a fraction of a second. The technology could be integrated with any smartphone, tablet computer or digital camera.

Compared to existing computational photography software applications that are installed onto cameras and smartphones, the new chip consume much less power, says the Rahul Rithe, a graduate student in MIT's Department of Electrical Engineering and Computer Science.

"We wanted to build a single chip that could perform multiple operations, consume significantly less power compared to doing the same job in software, and do it all in real time," Rithe says.

One such task, known as High Dynamic Range (HDR) imaging, is designed to compensate for limitations on the range of brightness that can be recorded by existing digital cameras, to capture pictures that more accurately reflect the way we perceive the same scenes with our own eyes.

To do this, the chip's processor automatically takes three separate "low dynamic range" images with the camera: a normally exposed image, an overexposed image capturing details in the dark areas of the scene, and an underexposed image capturing details in the bright areas. It then merges them to create one image capturing the entire range of brightness in the scene, Rithe says.

Software-based systems typically take several seconds to perform this operation, while the chip can do it in a few hundred milliseconds on a 10-megapixel image. This means it is even fast enough to apply to video, Ickes says. The chip consumes dramatically less power than existing CPUs and GPUs while performing the operation, he adds.

Another task the chip can carry out is to enhance the lighting in a darkened scene more realistically than conventional flash photography. "Typically when taking pictures in a low-light situation, if we don?t use flash on the camera we get images that are pretty dark and noisy, and if we do use the flash we get bright images but with harsh lighting, and the ambience created by the natural lighting in the room is lost," Rithe says.

So in this instance the processor takes two images, one with a flash and one without. It then splits both into a base layer, containing just the large-scale features within the shot, and a detailed layer. Finally, it merges the two images, preserving the natural ambience from the base layer of the nonflash shot, while extracting the details from the picture taken with the flash.

To remove unwanted features from the image, such as noise, the system blurs any undesired pixel with its surrounding neighbors, so that it matches those around it. In conventional filtering, however, this means even those pixels at the edges of objects are also blurred, which results in a less detailed image.

But by using what is called a bilateral filter, the researchers are able to preserve these outlines, Rithe says. That is because bilateral filters will only blur pixels with their neighbors if they have been assigned a similar brightness value. Since any objects within the image are likely to have a very different level of brightness than that of their background, this prevents the system from blurring across any edges, he says.

To perform each of these tasks, the chip?s processing unit uses a method of organizing and storing data called a bilateral grid. The image is first divided into smaller blocks. For each block, a histogram is then created. This results in a 3-D representation of the image, with the x and y axes representing the position of the block, and the brightness histogram representing the third dimension.

This makes it easy for the filter to avoid blurring across edges, since pixels with different brightness levels are separated in this third axis in the grid structure, no matter how close together they are in the image itself.

With the aid of Taiwanese semiconductor manufacturer TSMC's University Shuttle Program, the researchers have already built a working prototype of the chip using 40-nanometer CMOS technology, and integrated it into a camera and display.


Previous
Next
Samsung HomeSync Media Server        All News        ASUS Launches MicroATX Motherboards for HTPCs
Sony Launches Three New Cyber-shot Cameras     Digital Cameras News      Samsung GALAXY Camera Wi-Fi Released

Get RSS feed Easy Print E-Mail this Message

Most Popular News
 
Home | News | All News | Reviews | Articles | Guides | Download | Expert Area | Forum | Site Info
Site best viewed at 1024x768+ - CDRINFO.COM 1998-2014 - All rights reserved -
Privacy policy - Contact Us .