Thursday, November 26, 2015
Submit your own News for
inclusion in our Site.
Click here...
Breaking News
New Huawei Mate 8 Smartphone Launched With Kirin 950 Inside
Samsung's New DDR4 with TSV Gives a Boost To Data Centers and Servers
Raspberry Pi Zero Is A $5 Tiny Computer
Panasonic's CX Ultra HD Smart TVs Bring 4K Closer To Home
New LG Ray Smartphone Focuses On Photo Shooting
HP Profit Lower Than Expected
Police Arrests Fifth Suspect In TalkTalk Hack Investigation
Toshiba Develops Fast 3D Metal Printer
Active Discussions
roxio issues with xp pro
How to back up a PS2 DL game
Copy a protected DVD?
How to burn a backup copy of The Frozen Throne
Help make DVDInfoPro better with dvdinfomantis!!!
Copied dvd's say blank in computer only
menu making
Optiarc AD-7260S review
 Home > News > Optical Storage > Nano Re...
Last 7 Days News : SU MO TU WE TH FR SA All News

Friday, June 21, 2013
Nano Research Technique Allows Petabyte Storage On A DVD

Researchers has overcome a fundamental law of optical science that could lead to faster and more energy-efficient optical computing - a technique that would allow Petabyte storage on a single disc.

Researchers at Swinburne University of Technology have developed a three-dimensional optical beam lithography with 9nm feature size and 52nm two-line resolution, in a newly developed two-photon absorption resin with high mechanical strength.

In plain English, the has developed a technique that enables three-dimensional optical beam lithography at nine nanometres. The technique produces a focal spot that is 1 ten thousandth of a human hair, enabling more data to be written on an optical disc.

The current nanofabrication techniques including electron beam lithography provide fabrication resolution in the nanometre range. The major limitation of these techniques is their incapability of arbitrary three-dimensional nanofabrication. This has stimulated the rapid development of far-field three-dimensional optical beam lithography where a laser beam is focused for maskless direct writing. However, the diffraction nature of light is a barrier for achieving nanometre feature and resolution in a single-beam optical beam lithography.

The newly discovered technique overcomes a fundamental law discovered in 1873 by German scientist Ernst Abbe. He determined that a light beam focused by a lens cannot produce a focal spot smaller than half of the wavelength or 500 nanometres for visible light. This fundamental law also set up a barrier for scientists to access small structures in the nanometre scale.

Professor Min Gu, director of the Centre for Micro-Photonics at Swinburne, said by using a second donut-shaped beam to inhibit the photopolymerisation triggered by the writing beam in the donut ring, two-beam optical beam lithography can break the limit defined by the diffraction spot size of the two focused beams.

He said the key to 3D deep sub-diffraction optical beam lithography was the development with CSIRO of a unique two-photon absorption resin.

"This enabled a two-channel chemical reaction associated with the polymerisation and its counterpart of inhibited polymerisation, respectively, which eventually attributed to build mechanically robust nanostructures. Thus, the development of the vertical integration of integrated circuits, leading to ultra-fast optical information signal processors, becomes possible in the near future," Professor Gu said.

This breakthrough could lead to reduced cost and reduced energy consumption in data storage, Professor Gu said.

Improving Power and Programming Are Key Factors For Advancing To Exascale Computing        All News        ITC To Inverstigate Nokia Complaint Against HTC
CyberLink Introduces Media Suite 11     Optical Storage News      Pioneer Introduces The BDR-XS05J Portable BDXL Drive

Get RSS feed Easy Print E-Mail this Message

Most Popular News
Home | News | All News | Reviews | Articles | Guides | Download | Expert Area | Forum | Site Info
Site best viewed at 1024x768+ - CDRINFO.COM 1998-2015 - All rights reserved -
Privacy policy - Contact Us .