Wednesday, May 25, 2016
Search
  
Submit your own News for
inclusion in our Site.
Click here...
Breaking News
Huawei Sues Samsung Over Mobile Patents
Toyota Is Investing In Uber
Google Enhances Ads For Mobile Devices
LG G5 "Friends" LG CAM Plus, LG 360 CAM, LG 360 VR, LG TONE Devices Launch In US
Twitter Photos, videos And Names in Reply Tweets Will No Longer Count Toward 140-character Limit
Samsung Expands 750 EVO SSD With Availability and Increases Capacity to 500GB
Google's Paris Offices Raided
OCZ RD400 NVMe SSD Series Released
Active Discussions
Which of these DVD media are the best, most durable?
How to back up a PS2 DL game
Copy a protected DVD?
roxio issues with xp pro
Help make DVDInfoPro better with dvdinfomantis!!!
menu making
Optiarc AD-7260S review
cdrw trouble
 Home > News > PC Parts > Fujitsu...
Last 7 Days News : SU MO TU WE TH FR SA All News

Wednesday, November 06, 2013
Fujitsu Adds Light To PCI Express with Intel Silicon Photonics


Fujitsu has worked with Intel to build and demonstrate the first Intel Optical PCIe Express (OPCIe) based server, enabled by Intel Silicon Photonics technology.

OPCIe powered servers offer advantages over non OPCIe based servers. Rack based servers, especially 1u and 2u servers are space and power constrained. Sometimes OEMs and end users want to add additional capabilities such as more storage and CPUs to these servers but are limited because there is simply not enough space for these components or because packing too many components too close to each other increases the heat density and prevents the system from being able to cool the components.

Fujitsu found a way to fix these limitations. The solution to the power and space density problems is to locate the storage and compute components on a remote blade or tray in a way that they appear to the CPU to be on the main motherboard. The other way to do this is to have a pool of hard drives managed by a second server - but this approach requires messages be sent between the two servers and this adds latency. It is possible to do this with copper cables; however the distance the copper cables can span is limited due to electro-magnetic interference (EMI). One could use amplifiers and signal conditioners but these obviously add power and cost. Additionally PCI Express cables can be heavy and bulky.

Fujitsu took two standard Primergy RX200 servers and added an Intel Silicon Photonics module into each along with an Intel designed FPGA. The FPGA did the necessary signal conditioning to make PCI Express "optical friendly". Using Intel Silicon Photonics they were able to send PCI Express protocol optically through an MXC connector to an expansion box.



In this expansion box was several solid state disks (SSD) and Xeon Phi co-processors and there was a Silicon Photonics module along with the FPGA to make PCI Express optical friendly. With this configuration, SSD?s and Xeon Phi's appeared to the RX200 server as if they were on the mother board. With photons traveling at 186,000 miles per second the extra latency of travelling down a few meters of cable cannot reliably be measured (it can be calculated to be ~5ns/meter or 5 billionths of a second).

This approach allowed Fujitsu to increase the storage capacity of the server because they now were able to utilize the additional disk drives in the expansion box. The number of drives is determined by the physical size of the box.

Fujitsu was also able to increase the effective CPU capacity of the Xeon E5's in the RX200 server because the Xeon E5's could now utilize the CPU capacity of the Xeon Phi co-processors. In a standard 1u rack it would be hard if not impossible to incorporate Xeon Phi's.

The Fujitsu approach also solves the SSD expansion problem, the CPU expansion problem and the total cooling and cooling density problems.

Besides Intel Silicon Photonics the Fujitsu demo also included Xeon E5 microprocessors and Xeon Phi co-processors.

Photonic signaling (aka fiber optics) has two fundamental advantages over copper signaling. First, when electric signals go down a wire or PCB trace they emit electromagnetic radiation (EMI) and when this EMI from one wire or trace couples into an adjacent wire it causes noise, which limits the bandwidth distance product. For example, 10G Ethernet copper cables have a practical limit of 10 meters. Of course, you can put amplifies or signal conditioners on the cables and make an "active copper cable" but these add power and cost. Active copper cables are made for 10G Ethernet and they have a practical limit of 20 meters.

Photons don't emit EMI like electrons do thus fiber based cables can go much longer. For example with the lower cost lasers used in data centers today at 10G you can build 500 meter cables. You can go as far as 80km if you used a more expensive laser, but these are only needed a fraction of the time in the data center (usually when you are connecting the data center to the outside world.)

The other benefit of optical communication is lighter cables. Optical fibers are thin, typically 120 microns and light.

But optical communications is not used more in the data center today due to high costs. Optical devices made for data centers are expensive. They are made out of expensive materials like Lithium-Niobate or Gallium-Arsenide, which are typically difficult to manufacture. The state of the art for these exotic materials is 3 inch wafers with very low yields. They are designed inside of gold lined cans and sometimes manual assembly is required as technicians "light up" the lasers and align them to the thin fibers. A special index matching epoxy is used that sometimes can cost as much as gold per ounce. Bottom line is that while optical communications can go further and uses light fiber cables it costs a lot more.

According to Victor Krutul is the director of marketing for the Silicon Photonics Operation at Intel, Silicon Photonics is th answer. Silicon Photonics is the science of making Photonic devices out of Silicon in a CMOS fab. Silicon is the most common element in the Earth's crust, so it's not expensive.




Previous
Next
Seagate Ships World's Thinnest 2TB Hard Disk        All News        Intel Regroups to Address Connected Gadgets
Seagate Ships World's Thinnest 2TB Hard Disk     PC Parts News      New iPad Air Costs Less to Make Than Previous iPad Model

Get RSS feed Easy Print E-Mail this Message

Related News
Sony Joins Forces with Cogitai to Conduct Research and Development for Artificial Intelligence
Brian Krzanich Outlines Intel's Future Strategy
Microsoft Positions Windows 10 As A Platform for the Intelligence Revolution
Intel To Axe 12,000 Jobs, Focuses On Cloud And Smart, Connected Computing Devicess
Intel Outlines Next Generation of Experiences At 2016 Intel Developers Forum Shenzhen
Intel Packs Altera Arria 10 FPGAs With Xeon E5-2600 v4 Processors
Intel Senior Executives Leaving Company
Intel Introduces Xeon Processor E5-2600 v4 And Its First 3D NAND SSDs
Chinese AI Team To Challenge Google's AlphaGo
Intel To Break From Typical Two-year CPU Release Cycle
New Intel NUC "Skull Canyon" Comes To Change the Game
Google Artificial Intelligence Program Wins Final Game In Go Tournament

Most Popular News
 
Home | News | All News | Reviews | Articles | Guides | Download | Expert Area | Forum | Site Info
Site best viewed at 1024x768+ - CDRINFO.COM 1998-2016 - All rights reserved -
Privacy policy - Contact Us .