Monday, October 24, 2016
Submit your own News for
inclusion in our Site.
Click here...
Breaking News
New Lenovo Systems Commercial Desktops and Notebooks Are Featuring 7th Generation AMD PRO Processors
Apple Watch Nike+ Arrives Friday, October 28
These Are The New Xbox One S Bundles For This Holiday
Smartwatch Market Declines Significantly In The Third Quarter
Samsung Galaxy Tab A 10.1" With S Pen Released
Samsung Galaxy Note 7 Customers To Get New Galaxy Note 8 Or Galaxy S8 Smartphones Half Price
AT&T to Acquire Time Warner For $85.4B
Internet Disruptions Were Caused By Attacked Connected Devices
Active Discussions
Which of these DVD media are the best, most durable?
How to back up a PS2 DL game
Copy a protected DVD?
roxio issues with xp pro
Help make DVDInfoPro better with dvdinfomantis!!!
menu making
Optiarc AD-7260S review
cdrw trouble
 Home > News > General Computing > Panason...
Last 7 Days News : SU MO TU WE TH FR SA All News

Thursday, April 10, 2014
Panasonic Solar Cell Achieves World's Highest Energy Conversion Efficiency

Panasonic claims it has achieved a conversion efficiency of 25.6% (cell area: 143.7 cm²) in its HIT solar cells, a major increase over the previous world record for crystalline silicon-based solar cells.

The previous record for the conversion efficiency of crystalline silicon-based solar cells of a practical size (100 cm² and over) was 24.7%, as announced by Panasonic in February 2013 (cell area: 101.8 cm²). The new record is 0.9 points higher and the first to break through the 25% barrier for practical size cells. It is also an improvement of 0.6 points over the previous record for small area crystalline silicon-based solar cells (cell area: 4 cm²) of 25.0%.

The achievement of this new record was made possible by further development of Panasonic's proprietary heterojunction technology to realize the high conversion efficiency and high temperature properties of the company's HIT solar cells as well as adopting a back-contact solar cell structure, with the electrodes on the back of the solar cell, which allows the more efficient utilization of sunlight.

A key feature of HIT technology is its ability to reduce the recombination loss of charge carriers, particles of electricity generated by light, through laminating layers of high-quality amorphous silicon on the surface of the monocrystalline silicon substrate, where power is generated. By utilizing the technology to form a high-quality amorphous silicon film on the monocrystalline substrate while minimizing damage to the surface of the substrate, it has been possible to realize a high temperature coefficient of -0.25% per degree Celsius which is able to maintain a high conversion efficiency even with high open circuit voltage (Voc) and at high temperatures.

In order to increase the current in a solar cell, it is necessary to lead the sunlight which arrive at the cell's surface to the monocrystalline silicon substrate, which is the layer which generates the power with less loss. Placing the electrodes on the reverse as back contacts allows the light to reach the substrate more efficiently. This has led to a marked improvement in short circuit current density (Jsc) to 41.8mA/cm² over Panasonic's previous figure of 39.5mA/cm² (in the case of a cell with a conversion efficiency of 24.7%).

In solar cells, the generated electrical current is accumulated in the surface grid electrodes and output externally. Previously, the grid electrodes on the light-receiving side were optimized by balancing the thickness of the grid electrodes (thinning the grid electrodes to reduce the amount of light blocked) and the reduction of electrical resistance loss, but by placing the electrodes on the reverse side, it has become possible to reduce the resistive loss when the current is fed to the grid electrodes. In addition, a high fill factor (FF) of 0.827, has been achieved, even at a practical cell size by improving resistance loss in the amorphous silicon layer.

Cell properties

  • Open-circuit voltage (Voc): 0.740 V
  • Short circuit current (Isc): 6.01 A
  • Short circuit current density (Jsc): 41.8 mA/cm²
  • Fill factor (FF): 0.827
  • Cell conversion efficiency: 25.6%
  • Cell area: 143.7 cm²

Google Invests In Robot Company Savioke        All News        Facebook To Require Separate Mobile App for Messages
Google Invests In Robot Company Savioke     General Computing News      Facebook To Require Separate Mobile App for Messages

Get RSS feed Easy Print E-Mail this Message

Related News
Panasonic Technology Transmits Data By Human Touch
Panasonic Bendable, Twistable, Flexible Lithium-ion Battery Could Bring Revolution To Future Devices
Panasonic Releases New LUMIX Cameras Including The 6K LUMIX GH5
NHK Join Forces With Panasonic And Sony To Win The 8K TV Race
Nissan Said to Exit Battery Business
Panasonic To Pay 129 Million Euros Fine Over Cathode Ray Tube Price Fixing Case
Panasonic Unveils 8K Ultra-bright Images Created by Four 4K Projectors
Panasonic LUMIX GX85 Packs High Image Quality In a Compact Body
Panasonic Develops Secong Generation Freeze-ray Optical Disc-Based Data Archive System
Panasonic Announces Two New Rugged Smartphones
Panasonic At CES 2016
Panasonic And Facebook Develop Optical Disc-Based Data Archive System For Data Centers

Most Popular News
Home | News | All News | Reviews | Articles | Guides | Download | Expert Area | Forum | Site Info
Site best viewed at 1024x768+ - CDRINFO.COM 1998-2016 - All rights reserved -
Privacy policy - Contact Us .