Saturday, November 22, 2014
Search
  
Submit your own News for
inclusion in our Site.
Click here...
Breaking News
Samsung Files ITC Complaint Against Nvidia
Europe To Ask Google Unlink Its Commercial And Search Services
Streaming TV Service Aereo Files for Bankruptcy
Square Launches Cash Register Service
Call of Duty: Advanced Warfare is the Biggest Entertainment Launch of 2014
Intel-Micron 3D NAND To Have 32 Layers, 256Gb Per Die
Intel To Release Chromecast-like Thumb-sized PCs
Google Contributor Lets You Pay And And See No Ads In Your Favorite Sites
Active Discussions
cdrw trouble
CDR for car Sat Nav
DVD/DL for Optiarc 7191S at 8X
Copied dvd's say blank in computer only
Made video, won't play back easily
New Features In Firefox 33
updated tests for dvd and cd burners
How to generate lots of different CDs quickly
 Home > News > General Computing > Panason...
Last 7 Days News : SU MO TU WE TH FR SA All News

Thursday, April 10, 2014
Panasonic Solar Cell Achieves World's Highest Energy Conversion Efficiency


Panasonic claims it has achieved a conversion efficiency of 25.6% (cell area: 143.7 cm²) in its HIT solar cells, a major increase over the previous world record for crystalline silicon-based solar cells.

The previous record for the conversion efficiency of crystalline silicon-based solar cells of a practical size (100 cm² and over) was 24.7%, as announced by Panasonic in February 2013 (cell area: 101.8 cm²). The new record is 0.9 points higher and the first to break through the 25% barrier for practical size cells. It is also an improvement of 0.6 points over the previous record for small area crystalline silicon-based solar cells (cell area: 4 cm²) of 25.0%.

The achievement of this new record was made possible by further development of Panasonic's proprietary heterojunction technology to realize the high conversion efficiency and high temperature properties of the company's HIT solar cells as well as adopting a back-contact solar cell structure, with the electrodes on the back of the solar cell, which allows the more efficient utilization of sunlight.

A key feature of HIT technology is its ability to reduce the recombination loss of charge carriers, particles of electricity generated by light, through laminating layers of high-quality amorphous silicon on the surface of the monocrystalline silicon substrate, where power is generated. By utilizing the technology to form a high-quality amorphous silicon film on the monocrystalline substrate while minimizing damage to the surface of the substrate, it has been possible to realize a high temperature coefficient of -0.25% per degree Celsius which is able to maintain a high conversion efficiency even with high open circuit voltage (Voc) and at high temperatures.

In order to increase the current in a solar cell, it is necessary to lead the sunlight which arrive at the cell's surface to the monocrystalline silicon substrate, which is the layer which generates the power with less loss. Placing the electrodes on the reverse as back contacts allows the light to reach the substrate more efficiently. This has led to a marked improvement in short circuit current density (Jsc) to 41.8mA/cm² over Panasonic's previous figure of 39.5mA/cm² (in the case of a cell with a conversion efficiency of 24.7%).

In solar cells, the generated electrical current is accumulated in the surface grid electrodes and output externally. Previously, the grid electrodes on the light-receiving side were optimized by balancing the thickness of the grid electrodes (thinning the grid electrodes to reduce the amount of light blocked) and the reduction of electrical resistance loss, but by placing the electrodes on the reverse side, it has become possible to reduce the resistive loss when the current is fed to the grid electrodes. In addition, a high fill factor (FF) of 0.827, has been achieved, even at a practical cell size by improving resistance loss in the amorphous silicon layer.

Cell properties

  • Open-circuit voltage (Voc): 0.740 V
  • Short circuit current (Isc): 6.01 A
  • Short circuit current density (Jsc): 41.8 mA/cm²
  • Fill factor (FF): 0.827
  • Cell conversion efficiency: 25.6%
  • Cell area: 143.7 cm²



Previous
Next
Google Invests In Robot Company Savioke        All News        Facebook To Require Separate Mobile App for Messages
Google Invests In Robot Company Savioke     General Computing News      Facebook To Require Separate Mobile App for Messages

Get RSS feed Easy Print E-Mail this Message

Related News
Panasonic Expands Toughbook H2 Battery Recall in The United States
Panasonic Raises Profit Outlook
Panasonic AX800 4K ULTRA HD TVs Update Adds Compatibility With Netflix 4K Streaming
Panasonic Introduces Rugged 7-inch Android Tablet
Panasonic to Start Licensing Unified IP Core for HD-PLC
Panasonic to Offload Sanyo's North America TV Business
Panasonic Develops 85-inch 4k Touch Screen, Showcases New HEVC LSI
Panasonic Commercializes Pin-Shaped Lithium Ion Battery For Wearables
Panasonic To Close DVD-player Factory In Slovakia
Panasonic and Leica Expand Partnership Agreement
Panasonic Reveals The Lumix DMC-LX100, Lumix DMC-GM5 Cameras And the DMC-CM1 Smartphone
Panasonic Showcases Optimized Workflow at IBC 2014

Most Popular News
 
Home | News | All News | Reviews | Articles | Guides | Download | Expert Area | Forum | Site Info
Site best viewed at 1024x768+ - CDRINFO.COM 1998-2014 - All rights reserved -
Privacy policy - Contact Us .