Tuesday, September 30, 2014
Search
  
Submit your own News for
inclusion in our Site.
Click here...
Breaking News
MPEG LA Rolls Out HEVC License
PayPal To Become An Independent Publicly Traded Company in 2015
AMD To Showcase ARM Cortex-A57-Based Hadoop on Opteron Processors
SanDisk Introduces New X300 SSD And Client SSD Upgrade Service For Corporate Environments
TSMC and ARM Announce 16nm FinFET Silicon with 64-bit ARM big.LITTLE Technology
Google To Unveil New Music Services
Europe Says Ireland Helped Apple Pay Less Taxes
Pioneer Develops Rearview Mirror Telematics Unit With LTE Connectivity
Active Discussions
Yamaha CRW-F1UX
help questions structure DVDR
Made video, won't play back easily
Questions durability monitor LCD
Questions fungus CD/DVD Media, Some expert engineer in optical media can help me?
CD, DVD and Blu-ray burning for Android in development
IBM supercharges Power servers with graphics chips
Werner Vogels: four cloud computing trends for 2014
 Home > News > PC Parts > Researc...
Last 7 Days News : SU MO TU WE TH FR SA All News

Monday, June 13, 2011
Researchers Create Phase-change Disk Drives


Researchers have developed a phase-change memory solid state storage device that provides performance thousands of times faster than a conventional hard drive and up to seven times faster than current state-of-the-art solid-state drives (SSDs).

The device was developed in the Computer Science and Engineering department at the UC San Diego Jacobs School of Engineering and will be on exhibit June 7-8 at DAC 2011, a technical conference and trade show on electronic design automation, with the support of Micron Technology, BEEcube and Xilinx.

The storage system, called "Moneta," uses phase-change memory (PCM), an emerging data storage technology that stores data in the crystal structure of a metal alloy called a chalcogenide. PCM is faster and simpler to use than flash memory - the technology that currently dominates the SSD market.

Moneta marks the latest advancement in solid state drives (SSDs). Unlike conventional hard disk drives, solid state storage drives have no moving parts. Today's SSDs use flash memory and can be found in a wide range of consumer electronics such as iPads and laptops. Although faster than hard disk, flash memory is still too slow to meet modern data storage and analysis demands, particularly in the area of high performance computing where the ability to sift through enormous volumes of data quickly is critical. Examples include storing and analyzing scientific data collected through environmental sensors, or even web searches through Google.

"As a society, we can gather all this data very, very quickly - much faster than we can analyze it with conventional, disk-based storage systems," said Steven Swanson, professor of Computer Science and Engineering and director of the Non-Volatile Systems Lab (NVSL). "Phase-change memory-based solid state storage devices will allow us to sift through all of this data, make sense of it, and extract useful information much faster. It has the potential to be revolutionary."

To store data, the PCM memory chips switch the alloy between a crystalline and amorphous state based on the application of heat through an electrical current. To read the data, the chips use a smaller current to determine which state the chalcogenide is in.

Moneta uses Micron Technology's first-generation PCM chips and can read large sections of data at a maximum rate of 1.1 gigabytes per second and write data at up to 371 megabytes per second. For smaller accesses (e.g., 512 B), Moneta can read at 327 megabytes per second and write at 91 megabytes per second , or between two and seven times faster than a fast flash-based SSD. Moneta also provides lower latency for each operation and should reduce energy requirements for data-intensive applications.

Swanson hopes to build the second generation of the Moneta storage device in the next six to nine months and says the technology could be ready for market in just a few years as the underlying phase-change memory technology improves. The development has also revealed a new technology challenge.

"We've found that you can build a much faster storage device, but in order to really make use of it, you have to change the software that manages it as well. Storage systems have evolved over the last 40 years to cater to disks, and disks are very, very slow," said Swanson. "Designing storage systems that can fully leverage technologies like PCM requires rethinking almost every aspect of how a computer system?s software manages and accesses storage. Moneta gives us a window into the future of what computer storage systems are going to look like, and gives us the opportunity now to rethink how we design computer systems in response."


Previous
Next
Panasonic Unveils the LUMIX GF3 Interchangeable Lens System Camera        All News        Sony's Next Generation FeliCa Contactless IC Chip Supports AES Encryption
AMD Unveils New Tools For Development Of OpenCL Applications     PC Parts News      Bluescreens Reported on Latest SandForce-based SSDs

Get RSS feed Easy Print E-Mail this Message

Related News
IBM Develops Ultra-fast Phase Change Memory System
Micron Extends Portfolio of Phase Change Memory for Mobile Devices
Micron Brings Phase Change Memory for Mobile Devices, Releases m4 mSATA SSD for Ultrabooks
Researchers Use Diamond To Increase Data Storage Of Phase-Change Memory
IBM scientists Demonstrate Computer Memory Breakthrough
New Ultra-low-power Memory Dramatically Extends Battery Life For Mobile Devices
HP Researchers See Memristors As The Future Of Memory Chips
Non-Volatile-Memories Take the Stage at ISSCC 2010
Samsung And Numonyx Join Forces On Phase Change Memory
Phase Change Technology to Challenge Flash Memory

Most Popular News
 
Home | News | All News | Reviews | Articles | Guides | Download | Expert Area | Forum | Site Info
Site best viewed at 1024x768+ - CDRINFO.COM 1998-2014 - All rights reserved -
Privacy policy - Contact Us .