Breaking News

GEEKOM to Unveil World's Most Powerful AI Mini PC at IFA 2025 Dolby Unveils Dolby Vision 2 Samsung Launches All-New Sound Tower at IFA 2025 LG Display 4th-Generation OLED Panel obtains industry’s first Perfect Reproduction Verification Viltrox launches AF 56mm Ultra-large aperture F1.2 Pro E and XF (APS-C) lenses

logo

  • Share Us
    • Facebook
    • Twitter
  • Home
  • Home
  • News
  • Reviews
  • Essays
  • Forum
  • Legacy
  • About
    • Submit News

    • Contact Us
    • Privacy

    • Promotion
    • Advertise

    • RSS Feed
    • Site Map

Search form

Researchers Create Carbon Nanotube-based Integrated Circuits on Plastic Substrates

Researchers Create Carbon Nanotube-based Integrated Circuits on Plastic Substrates

Enterprise & IT Feb 7,2011 0

Japanese and Finish researchers have developed a technology that could help manufacturing of high-performance flexible devices by a simple process. As part of NEDO's Industrial Technology Research Grant Japan-Finland collaborative project, Professors Yutaka Ohno from Nagoya University in Japan and Esko I. Kauppinen from Aalto University in Finland along with their colleagues have developed a simple and fast process to manufacture high quality carbon nanotube-based thin film transistors (TFT) on a plastic substrate. They used this technology to manufacture the world's first sequential logic circuits using carbon nanotubes.

The results were published on February 6th in the electronic edition of the British science journal nature nanotechnology.

Lightweight and flexible devices such as mobile phones and electronic paper are gaining attention for their roles in achieving a smarter ubiquitous information society. For flexible electronics, as a substitute for conventional solid silicon substrates, there is a demand for integrated circuits to be manufactured on a plastic substrate with high speed and low cost.

So far, flexible thin-film transistors (TFT) have been produced using a variety of semiconductor materials such as silicon and zinc-oxide, which require vacuum deposition, high-temperature curing, and complex transfer processes. In recent years, organic semiconductors have been rapidly developing, however such semiconductors still have low-mobility and there are problems with their chemical stability. Recently, carbon nanotube thin films have been attracting attention due to their chemical stability and high-mobility.

However, although simple solution processes have been developed to produce TFTs, such TFTs have not been yet fulfilled capability expectations thus far, due to the deterioration of the conduction properties of carbon nanotube thin films through the dispersion process in the solution.

In conventional solution processes, soot-like carbon nanotube material is first dispersed in liquid via sonication to purify the materials and to separate the tubes from each other. In such processes, it is difficult to form homogeneous carbon nanotube films. In addition, technology has not yet been developed to completely remove the dispersant. Using NEDO's technology, the researchers continuously grow nanotubes in an atmospheric pressure chemical-vapor deposition process. The nanotubes are then collected on the filter and subsequently transferred onto a polymer substrate using simple gas-phase filtration and transfer processes to achieve clean, uniform carbon nanotube films (Fig. 1). It takes only a few seconds to deposit the carbon nanotubes. This process may be adaptable to high-speed roll-to-roll manufacturing systems in the near future, the researchers added.



In conventional solution-based carbon nanotube TFT manufacturing processes, nanotubes are dispersed using powerful ultrasound which cuts the nanotubes and reduces their length. Due to high contact resistance between these short nanotubes and the residual impurities caused by the dispersion process, the resulting TFT mobility was approximately 1 cm2/Vs. Due to the doping effect caused by residual impurities from the dispersion, the on/off ratio was only between about 104~105. When carbon nanotube thin films are manufactured using the above gas-phase filtration and transfer processes, the tubes in the film are as clean and long as those that are grown in the synthesis processes. Accordingly, TFTs with a high mobility of 35 cm2/Vs were achieved. In addition, due to precision control of the nanotube density, an on/off ratio of 6x106 was simultaneously achieved. The TFT performance the researchers have achieved is significantly higher than the performance of organic semiconductor TFTs and carbon nanotube TFTs reported so far, and equal to the performance of low-temperature polycrystalline silicon as well as zinc oxide TFTs, which are manufactured using high-temperature processes and vacuum-based processes.

According to the researchers, the gas-phase filtration and transfer processes can be applied to manufacture devices on any substrate material.

The researchers tested the new technology by integrated the high-performance carbon nanotube TFTs on plastic substrates. They claim thet they achieved successful operations of ring oscillators and flip-flops.

"High-speed operations have been achieved with a delay time of 12 microseconds per logic gate. The flip-flops that have been manufactured through these processes are the world's first carbon nanotube-based synchronous sequential logic circuits," the researchers added.

Tags:
Previous Post
Samsung Wave II Hits UK Stores
Next Post
Canon Introduces New Powershot and EOS Rebel Series Of Cameras

Related Posts

Latest News

GEEKOM to Unveil World's Most Powerful AI Mini PC at IFA 2025
Enterprise & IT

GEEKOM to Unveil World's Most Powerful AI Mini PC at IFA 2025

Dolby Unveils Dolby Vision 2
Consumer Electronics

Dolby Unveils Dolby Vision 2

Samsung Launches All-New Sound Tower at IFA 2025
Consumer Electronics

Samsung Launches All-New Sound Tower at IFA 2025

LG Display 4th-Generation OLED Panel obtains industry’s first Perfect Reproduction Verification
Enterprise & IT

LG Display 4th-Generation OLED Panel obtains industry’s first Perfect Reproduction Verification

Viltrox launches AF 56mm Ultra-large aperture F1.2 Pro E and XF (APS-C) lenses
Cameras

Viltrox launches AF 56mm Ultra-large aperture F1.2 Pro E and XF (APS-C) lenses

Popular Reviews

be quiet! Dark Mount Keyboard

be quiet! Dark Mount Keyboard

be quiet! Light Loop 360mm

be quiet! Light Loop 360mm

be quiet! Light Mount Keyboard

be quiet! Light Mount Keyboard

Noctua NH-D15 G2

Noctua NH-D15 G2

Terramaster F8-SSD

Terramaster F8-SSD

be quiet! Light Base 600 LX

be quiet! Light Base 600 LX

Soundpeats Pop Clip

Soundpeats Pop Clip

be quiet! Pure Base 501

be quiet! Pure Base 501

Main menu

  • Home
  • News
  • Reviews
  • Essays
  • Forum
  • Legacy
  • About
    • Submit News

    • Contact Us
    • Privacy

    • Promotion
    • Advertise

    • RSS Feed
    • Site Map
  • About
  • Privacy
  • Contact Us
  • Promotional Opportunities @ CdrInfo.com
  • Advertise on out site
  • Submit your News to our site
  • RSS Feed