Researchers Store Terabyte Data In Glass
Using nanostructured glass, scientists at the University of Southampton have demonstrated the recording and retrieval processes of five dimensional digital data by femtosecond laser writing.
The storage allows for a 360 TB/disc data capacity, thermal stability up to 1000°C and practically unlimited lifetime.
The data is recorded via self-assembled nanostructures created in fused quartz, which is able to store vast quantities of data for over a million years. The information encoding is realised in five dimensions: the size and orientation in addition to the three dimensional position of these nanostructures.
A 300 kb digital copy of a text file was successfully recorded in 5D using ultrafast laser, producing extremely short and intense pulses of light. The file is written in three layers of nanostructured dots separated by five micrometres (one millionth of a metre).
The self-assembled nanostructures change the way light travels through glass, modifying polarisation of light that can then be read by combination of optical microscope and a polariser, similar to that found in Polaroid sunglasses.
The research is led by Jingyu Zhang from the Universitys Optoelectronics Research Centre (ORC) and conducted under a joint project with Eindhoven University of Technology.
"We are developing a very stable and safe form of portable memory using glass, which could be highly useful for organisations with big archives. At the moment companies have to back up their archives every five to ten years because hard-drive memory has a relatively short lifespan," says Jingyu.
"Museums who want to preserve information or places like the national archives where they have huge numbers of documents, would really benefit."
The team are now looking for industry partners to commercialise this new technology.
The data is recorded via self-assembled nanostructures created in fused quartz, which is able to store vast quantities of data for over a million years. The information encoding is realised in five dimensions: the size and orientation in addition to the three dimensional position of these nanostructures.
A 300 kb digital copy of a text file was successfully recorded in 5D using ultrafast laser, producing extremely short and intense pulses of light. The file is written in three layers of nanostructured dots separated by five micrometres (one millionth of a metre).
The self-assembled nanostructures change the way light travels through glass, modifying polarisation of light that can then be read by combination of optical microscope and a polariser, similar to that found in Polaroid sunglasses.
The research is led by Jingyu Zhang from the Universitys Optoelectronics Research Centre (ORC) and conducted under a joint project with Eindhoven University of Technology.
"We are developing a very stable and safe form of portable memory using glass, which could be highly useful for organisations with big archives. At the moment companies have to back up their archives every five to ten years because hard-drive memory has a relatively short lifespan," says Jingyu.
"Museums who want to preserve information or places like the national archives where they have huge numbers of documents, would really benefit."
The team are now looking for industry partners to commercialise this new technology.