Breaking News

ASUS Announces Pro WS Platinum Series Power Supplies Razer Hammerhead V3 Wired Earbuds Bring Premium Sound and Comfort to Every Device ASUS ROG Unveils ROG Astral GeForce RTX 5080 Dhahab CORE OC Edition Transcend Introduces 8TB Industrial SSD with Power Loss Protection Viltrox announces AF 85mm F1.4 Pro FE Portrait Lens

logo

  • Share Us
    • Facebook
    • Twitter
  • Home
  • Home
  • News
  • Reviews
  • Essays
  • Forum
  • Legacy
  • About
    • Submit News

    • Contact Us
    • Privacy

    • Promotion
    • Advertise

    • RSS Feed
    • Site Map

Search form

Google DeepMind Introduces Method for Improving Machine Learning Speed

Google DeepMind Introduces Method for Improving Machine Learning Speed

Enterprise & IT Nov 19,2016 0

Researchers at Google's DeepMind wrote in a paper published online Thursday that they had achieved a leap in the speed and performance of a machine learning system. Deepmind's paper "Reinforcement Learning with Unsupervised Auxiliary Tasks" introduces a method for greatly improving the learning speed and final performance of agents. DeepMind?s new system -- named Unsupervised Reinforcement and Auxiliary Learning agent, or Unreal -- learned to master a three-dimensional maze game called Labyrinth 10 times faster than the existing best AI software. It can now play the game at 87 percent the performance of expert human players, the DeepMind researchers said.

"Our agent is far quicker to train, and requires a lot less experience from the world to train, making it much more data efficient," DeepMind researchers Max Jaderberg and Volodymyr Mnih said. They added that Unreal would allow DeepMind?s researchers to experiment with new ideas much faster because of the reduced time it takes to train the system. DeepMind has already seen its AI products achieve highly respected results teaching itself to play video games, notably the retro Atari title Breakout.

Labyrinth is a game environment that DeepMind developed, loosely based on the design style used by the popular video game series Quake. It involves a machine having to navigate routes through a maze, scoring points by collecting apples.

This style of game is an important area for artificial intelligence research because the chance to score points in the game, and thus reinforce "positive" behaviors, occurs less frequently than in some other games. Additionally, the software has only partial knowledge of the maze?s layout at any one time.

One way the researchers achieved their results was by having Unreal replay its own past attempts at the game, focusing especially on situations in which it had scored points before. The researchers equated this in their paper to the way "animals dream about positively or negatively rewarding events more frequently."

The researchers also helped the system learn faster by asking it to maximize several different criteria at once, not simply its overall score in the game.

DeepMind achieved what is considered a major breakthrough in the field earlier this year when its AlphaGo software beat one of the world?s reigning champions in the ancient strategy game Go.

DeepMind?s Unreal system also mastered 57 vintage Atari games, such as Breakout, much faster -- and achieved higher scores -- than the company?s existing software. The researchers said Unreal could play these games on average 880 percent better than top human players, compared to 853 percent for DeepMind?s older AI agent.

But on the most complex Atari games, such as Montezuma?s Revenge, the new system made bigger leaps in performance.The prior AI system scored zero points, while Unreal achieved 3,000 -- greater than 50 percent of an expert human?s best effort.

Tags: deepmindMachine learning
Previous Post
OLED Makers Seen Struggling To Meet iPhone Output in 2017
Next Post
PS4 Slim Did Not Dethrone Xbox One in October

Related Posts

  • Imec Uses Machine Learning Algorithms in Chip Design to Achieve cm Accuracy and Low-power Ultra Wideband Localization

  • Seagate Uses NVIDIA's AI Inference Tools to Improve Hard Drive Manufacturing

  • Intel and Georgia Tech to Mitigate Machine Learning Deception Attacks

  • DeepMind Researchers Create Deep RL Agent That Outperforms Humans in the Atari Human Benchmark

  • Infineon, Cypress Deal Wins CFIUS Clearance

  • DARPA is Working on Mathematical Framework to Check the Safety of Autonomous Systems

  • IBM Launches New IC922 POWER9-Based Server For ML Inference

  • SiFive and CEVA Partner to Make Machine Learning Processors Mainstream

Latest News

ASUS Announces Pro WS Platinum Series Power Supplies
PC components

ASUS Announces Pro WS Platinum Series Power Supplies

Razer Hammerhead V3 Wired Earbuds Bring Premium Sound and Comfort to Every Device
Consumer Electronics

Razer Hammerhead V3 Wired Earbuds Bring Premium Sound and Comfort to Every Device

ASUS ROG Unveils ROG Astral GeForce RTX 5080 Dhahab CORE OC Edition
GPUs

ASUS ROG Unveils ROG Astral GeForce RTX 5080 Dhahab CORE OC Edition

Transcend Introduces 8TB Industrial SSD with Power Loss Protection
Enterprise & IT

Transcend Introduces 8TB Industrial SSD with Power Loss Protection

Viltrox announces AF 85mm F1.4 Pro FE Portrait Lens
Cameras

Viltrox announces AF 85mm F1.4 Pro FE Portrait Lens

Popular Reviews

be quiet! Light Loop 360mm

be quiet! Light Loop 360mm

be quiet! Dark Mount Keyboard

be quiet! Dark Mount Keyboard

Arctic Liquid Freezer III 420 - 360

Arctic Liquid Freezer III 420 - 360

be quiet! Light Mount Keyboard

be quiet! Light Mount Keyboard

Soundpeats Pop Clip

Soundpeats Pop Clip

Crucial T705 2TB NVME White

Crucial T705 2TB NVME White

be quiet! Light Base 600 LX

be quiet! Light Base 600 LX

Noctua NH-D15 G2

Noctua NH-D15 G2

Main menu

  • Home
  • News
  • Reviews
  • Essays
  • Forum
  • Legacy
  • About
    • Submit News

    • Contact Us
    • Privacy

    • Promotion
    • Advertise

    • RSS Feed
    • Site Map
  • About
  • Privacy
  • Contact Us
  • Promotional Opportunities @ CdrInfo.com
  • Advertise on out site
  • Submit your News to our site
  • RSS Feed