Breaking News

Samsung’s One UI 8 Expands to More Galaxy Devices ASUS Unveils ProArt Displays, PC Solutions, and More at IBC 2025 GIGABYTE AI-Powered X870E AORUS X3D Motherboards Redefining Performance and Innovation Sony Reimagines its 10 Series with Xperia 10 VII MSI Unveils MPG Infinite Z3 X3D Gaming Desktop

logo

  • Share Us
    • Facebook
    • Twitter
  • Home
  • Home
  • News
  • Reviews
  • Essays
  • Forum
  • Legacy
  • About
    • Submit News

    • Contact Us
    • Privacy

    • Promotion
    • Advertise

    • RSS Feed
    • Site Map

Search form

Intel, UC Santa Barbara Develop World's First Hybrid Silicon Laser

Intel, UC Santa Barbara Develop World's First Hybrid Silicon Laser

PC components Sep 19,2006 0

Researchers from Inteland the University of California, Santa Barbara (UCSB) have built the world's first electrically powered Hybrid Silicon Laser using standard silicon manufacturing processes. This breakthrough addresses one of the last major barriers to producing low-cost, high-bandwidth silicon photonics devices for use inside and around future computers and data centers.

The researchers were able to combine the light-emitting properties of Indium Phosphide with the light-routing capabilities of silicon into a single hybrid chip. When voltage is applied, light generated in the Indium Phosphide enters the silicon waveguide to create a continuous laser beam that can be used to drive other silicon photonic devices. A laser based on silicon could drive wider use of photonics in computers because the cost can be greatly reduced by using high-volume silicon manufacturing techniques.

"This could bring low-cost, terabit-level optical 'data pipes' inside future computers and help make possible a new era of high-performance computing applications," said Mario Paniccia, director of Intel's Photonics Technology Lab. "While still far from becoming a commercial product, we believe dozens, maybe even hundreds of hybrid silicon lasers could be integrated with other silicon photonic components onto a single silicon chip."

"By combining UCSB's expertise with Indium Phosphide and Intel's silicon photonics expertise, we have demonstrated a novel laser structure based on a bonding method that can be used at the wafer-, partial-wafer or die-level, and could be a solution for large-scale optical integration onto a silicon platform. This marks the beginning of highly integrated silicon photonic chips that can be mass produced at low cost," said John Bowers, a professor of electrical and computer engineering at UC Santa Barbara.

Technical Details

While widely used to mass produce affordable digital electronics today, silicon can also be used to route, detect, modulate and even amplify light, but not to effectively generate light. In contrast, Indium Phosphide-based lasers are commonly used today in telecommunications equipment. But the need to individually assemble and align them has made them too expensive to build in the high volumes and at the low costs needed by the PC industry.

The hybrid silicon laser involves a novel design employing Indium Phosphide-based material for light generation and amplification while using the silicon waveguide to contain and control the laser. The key to manufacturing the device is the use of a low-temperature, oxygen plasma -- an electrically charged oxygen gas -- to create a thin oxide layer (roughly 25 atoms thick) on the surfaces of both materials.

When heated and pressed together the oxide layer functions as a "glass-glue" fusing the two materials into a single chip. When voltage is applied, light generated in the Indium Phosphide-based material passes through the oxide "glass-glue" layer and into the silicon chip's waveguide, where it is contained and controlled, creating a hybrid silicon laser. The design of the waveguide is critical to determining the performance and specific wavelength of the hybrid silicon laser. More information on the Hybrid Silicon Laser can be found at http://www.intel.com/research/platform/sp/hybridlaser.htm.

Today's announcement builds on Intel's other accomplishments in its long-term research program to "siliconize" photonics using standard silicon manufacturing processes. In 2004, Intel researchers were the first to demonstrate a silicon-based optical modulator with a bandwidth in excess of 1GHz, nearly 50 times faster than previous demonstrations of modulation in silicon. In 2005, Intel researchers were the first to demonstrate that silicon could be used to amplify light using an external light source to produce a continuous wave laser-on-a-chip based on the "Raman effect."

Bowers has worked with Indium Phosphide-based materials and lasers for more than 25 years. Currently his research is focused on developing novel optoelectronic devices with data rates as high as 160Gb/s and techniques to bond dissimilar materials together to create new devices with improved performance.

Tags: Intel
Previous Post
Warner Considers DVD/HD DVD/Blu-Ray Hybrid Disc
Next Post
T-Mobile Dash Getting Close to Release

Related Posts

  • An Intel-HP Collaboration Delivers Next-Gen AI PCs

  • New Intel Xeon 6 CPUs to Maximize GPU-Accelerated AI Performance

  • Intel Unveils New GPUs for AI and Workstations at Computex 2025

  • G.SKILL Releases DDR5 Memory Support List for Intel 200S Boost

  • Intel and its partners release BIOS update for Intel 15th Gen to increase performance

  • Intel-AMD new motherboards announced

  • Intel at CES 2025

  • Intel Launches Arc B-Series Graphics Cards

Latest News

Samsung’s One UI 8 Expands to More Galaxy Devices
Smartphones

Samsung’s One UI 8 Expands to More Galaxy Devices

ASUS Unveils ProArt Displays, PC Solutions, and More at IBC 2025
Enterprise & IT

ASUS Unveils ProArt Displays, PC Solutions, and More at IBC 2025

GIGABYTE AI-Powered X870E AORUS X3D Motherboards Redefining Performance and Innovation
PC components

GIGABYTE AI-Powered X870E AORUS X3D Motherboards Redefining Performance and Innovation

Sony Reimagines its 10 Series with Xperia 10 VII
Smartphones

Sony Reimagines its 10 Series with Xperia 10 VII

MSI Unveils MPG Infinite Z3 X3D Gaming Desktop
Gaming

MSI Unveils MPG Infinite Z3 X3D Gaming Desktop

Popular Reviews

be quiet! Dark Mount Keyboard

be quiet! Dark Mount Keyboard

be quiet! Light Mount Keyboard

be quiet! Light Mount Keyboard

Terramaster F8-SSD

Terramaster F8-SSD

be quiet! Light Base 600 LX

be quiet! Light Base 600 LX

Noctua NH-D15 G2

Noctua NH-D15 G2

Soundpeats Pop Clip

Soundpeats Pop Clip

be quiet! Pure Base 501

be quiet! Pure Base 501

Akaso 360 Action camera

Akaso 360 Action camera

Main menu

  • Home
  • News
  • Reviews
  • Essays
  • Forum
  • Legacy
  • About
    • Submit News

    • Contact Us
    • Privacy

    • Promotion
    • Advertise

    • RSS Feed
    • Site Map
  • About
  • Privacy
  • Contact Us
  • Promotional Opportunities @ CdrInfo.com
  • Advertise on out site
  • Submit your News to our site
  • RSS Feed