Breaking News

Transcend's New ESD420 Portable SSD Offers MagSafe Compatibility and Pro-Level Performance G.SKILL Trident Z5 DDR5 Memory and WigiDash Receives European Hardware Awards 2025 Silicon Power Launches WP10 Magnetic Wireless Power Bank Razer Unveils the Ultra-Lightweight DeathAdder V4 Pro Sony launches a high-resolution shotgun microphone with superior sound quality and compact design.

logo

  • Share Us
    • Facebook
    • Twitter
  • Home
  • Home
  • News
  • Reviews
  • Essays
  • Forum
  • Legacy
  • About
    • Submit News

    • Contact Us
    • Privacy

    • Promotion
    • Advertise

    • RSS Feed
    • Site Map

Search form

New Computer Vision Tool Accelerates Annotation of Digital Images and Video

New Computer Vision Tool Accelerates Annotation of Digital Images and Video

Enterprise & IT Mar 5,2019 0

To make data annotation required for train the deep neural networks (DNNs) faster, Intel is conducting research to find better methods and deliver new tools.

Data scientists need annotated data to train the deep neural networks (DNNs) at the core of AI workflows. Obtaining annotated data, or annotating data yourself, is a challenging and time-consuming process. For example, Intel says that it took about 3,100 total hours for members of its own data annotation team to annotate the more than 769,000 objects used for just one of our algorithms.

To solve this challenge, Intel presented a new open source program called Computer Vision Annotation Tool (CVAT, pronounced “si-vi-eɪ-ti”) that accelerates the process of annotating digital images and videos for use in training computer vision algorithms.

Though there is a wealth of training data available on the Internet, it isn’t always possible to use online data to train a deep learning algorithm. For example, there may not be pre-annotated data available for new use cases. If pre-annotated training data does exist, the data may require license agreements that prevent their use in commercial products.

Intel decided to create and support an internal data annotation team.

CVAT was designed to provide users with a set of convenient instruments for annotating digital images and videos. CVAT supports supervised machine learning tasks pertaining to object detection, image classification, and image segmentation. It enables users to annotate images with four types of shapes: boxes, polygons (both generally and for segmentation tasks), polylines (which can be useful for annotating markings on roads), and points (e.g., for annotating face landmarks or pose estimation).

Additionally, CVAT provides features facilitating typical annotation tasks, such as a number of automation instruments (including the ability to copy and propagate objects, interpolation, and automatic annotation using the TensorFlow* Object Detection API), visual settings, shortcuts, filters, and more.

CVAT is accessible via a browser-based interface; following a simple deployment via Docker, no further installation is necessary. CVAT supports collaboration between teams as well as work by individuals. Users can create public tasks and split up work between other users. CVAT is also highly flexible, with support for many different annotation scenarios, a variety of optional tools, and the ability to be embedded into platforms such as Onepanel.

Like many early open-source projects, CVAT also has some known limitations. Its client has only been tested in Google Chrom* and may not perform well in other browsers. Though CVAT supports some automatic testing, all checks must be done manually, which can slow the development process. CVAT’s documentation is currently somewhat limited, which can impede participation in the tool’s development. Finally, CVAT can have performance issues in certain use cases due to the limitations of Chrome Sandbox. Despite these disadvantages, Intel says that CVAT should remain a useful tool for image annotation workflows.

By using feedback from users, Intel will determine future directions for CVAT’s development. The compay hopes to improve the tool’s user experience, feature set, stability, automation features, and ability to be integrated with other services, and encourage members of the community to take an active part in CVAT’s development.

For a deeper dive into how CVAT works, visit Intel's post on the Intel Developer Zone.

Tags: Artificial Intelligencedeep learningIntel
Previous Post
Huawei P30 Pro's Camera Said to Be Capable of Capturing Details on the Moon
Next Post
China Says Its New Rocket Can Challenge SpaceX

Related Posts

  • An Intel-HP Collaboration Delivers Next-Gen AI PCs

  • New Intel Xeon 6 CPUs to Maximize GPU-Accelerated AI Performance

  • Intel Unveils New GPUs for AI and Workstations at Computex 2025

  • G.SKILL Releases DDR5 Memory Support List for Intel 200S Boost

  • Intel and its partners release BIOS update for Intel 15th Gen to increase performance

  • Intel-AMD new motherboards announced

  • Intel at CES 2025

  • Intel Launches Arc B-Series Graphics Cards

Latest News

Transcend's New ESD420 Portable SSD Offers MagSafe Compatibility and Pro-Level Performance
PC components

Transcend's New ESD420 Portable SSD Offers MagSafe Compatibility and Pro-Level Performance

G.SKILL Trident Z5 DDR5 Memory and WigiDash Receives European Hardware Awards 2025
Enterprise & IT

G.SKILL Trident Z5 DDR5 Memory and WigiDash Receives European Hardware Awards 2025

Silicon Power Launches WP10 Magnetic Wireless Power Bank
Consumer Electronics

Silicon Power Launches WP10 Magnetic Wireless Power Bank

Razer Unveils the Ultra-Lightweight DeathAdder V4 Pro
PC components

Razer Unveils the Ultra-Lightweight DeathAdder V4 Pro

Sony launches a high-resolution shotgun microphone with superior sound quality and compact design.
Cameras

Sony launches a high-resolution shotgun microphone with superior sound quality and compact design.

Popular Reviews

be quiet! Light Loop 360mm

be quiet! Light Loop 360mm

be quiet! Dark Mount Keyboard

be quiet! Dark Mount Keyboard

be quiet! Light Mount Keyboard

be quiet! Light Mount Keyboard

Noctua NH-D15 G2

Noctua NH-D15 G2

Soundpeats Pop Clip

Soundpeats Pop Clip

be quiet! Light Base 600 LX

be quiet! Light Base 600 LX

Crucial T705 2TB NVME White

Crucial T705 2TB NVME White

be quiet! Pure Base 501

be quiet! Pure Base 501

Main menu

  • Home
  • News
  • Reviews
  • Essays
  • Forum
  • Legacy
  • About
    • Submit News

    • Contact Us
    • Privacy

    • Promotion
    • Advertise

    • RSS Feed
    • Site Map
  • About
  • Privacy
  • Contact Us
  • Promotional Opportunities @ CdrInfo.com
  • Advertise on out site
  • Submit your News to our site
  • RSS Feed