Breaking News

Razer Unveils Raiju V3 Pro Samsung announces Galaxy XR headset Leica M EV1 – the first M-Camera with an integrated electronic viewfinder Micron Delivers Industry’s Highest Capacity SOCAMM2 for Low-Power DRAM in the AI Data Center KIOXIA launches EXCERIA PLUS G3 and EXCERIA G3 microSD cards for exceptional photography and video performance

logo

  • Share Us
    • Facebook
    • Twitter
  • Home
  • Home
  • News
  • Reviews
  • Essays
  • Forum
  • Legacy
  • About
    • Submit News

    • Contact Us
    • Privacy

    • Promotion
    • Advertise

    • RSS Feed
    • Site Map

Search form

Intel’s Embedded Multi-Die Interconnect Bridge Helps Chips ‘Communicate’ Faster

Intel’s Embedded Multi-Die Interconnect Bridge Helps Chips ‘Communicate’ Faster

PC components Nov 26,2019 0

An Intel technology called EMIB (embedded multi-die interconnect bridge) is a complex multi-layered sliver of silicon no bigger than a grain of rice, which lets chips fling enormous quantities of data back and forth among adjoining chips at blinding speeds: several gigabytes per second.

Most chips in today’s smartphones, computers and servers are comprised of multiple smaller chips invisibly sealed inside one rectangular package.

These multiple chips — often including CPU, graphics, memory, IO and more — can communicate using Intel EMIBs, which speed the flow of data inside nearly 1 million laptops and field programmable gate array devices worldwide.

Intel expects that number to soon soar and include more products as EMIB technology enters the mainstream. For example, Intel’s Ponte Vecchio processor, a general-purpose GPU the company unveiled Nov. 17, contains EMIB silicon.

This technology allows chip architects to cobble together specialized chips faster. And compared with an older, competing design called an interposer — in which chips inside a package sit atop what is essentially a single electronic baseboard, with each chip plugged into it — tiny, flexible, cost-effective EMIB silicon offers an 85% increase in bandwidth. That can make your tech — laptop, server, 5G processor, graphics card— run dramatically faster.

The industry refers to this application as 2.5D package integration. Instead of using a large silicon interposer typically found in other 2.5D approaches, EMIB uses a very small bridge die, with multiple routing layers. This bridge die is embedded as part of our substrate fabrication process.

Traditional solutions to this challenge are categorized as 2.5D solutions, utilizing a silicon interposer and Through Silicon Vias (TSVs) to connect die at so-called silicon interconnect speed in a minimal footprint. The result is increasingly complex layouts and manufacturing techniques that delay tape-outs and depress yield rates.

Intel sought a solution that is practical to design, reliable across any die, and simple to implement in a design. The result is EMIB. There can be many embedded bridges in a single substrate, providing extremely high I/O and well controlled electrical interconnect paths between multiple die, as needed. Because the chips do not have to be connected to the package through a silicon interposer with TSVs, there is nothing to potentially degrade their performance. Intel uses micro-bumps for high density signals, and coarser pitch, standard flip chip bumps for direct power and ground connections from chip to package.

The cross-section shows two die that have been assembled to a package with micro-bumps providing die-to-die connections through a bridge chip.

The silicon interposer in a typical 2.5D package is a piece of silicon larger-than-all interconnecting die. In contrast, the silicon bridge is a small piece of silicon embedded only under the edges of two interconnecting die. This allows for most size die to be attached in multiple dimensions, eliminating additional physical constraints on heterogeneous die attachment within the theoretical limits.

Intel promises that the next-generation EMIB could double or even triple that bandwidth.

Tags: Intel
Previous Post
U.S. Department of Commerce Proposes Rule for Securing Information and Communications Technology and Services Supply Chain
Next Post
China's 5G Expansion Will Push the Worldwide Smartphone Market

Related Posts

  • Intel and NVIDIA to Jointly Develop AI Infrastructure and Personal Computing Products

  • An Intel-HP Collaboration Delivers Next-Gen AI PCs

  • New Intel Xeon 6 CPUs to Maximize GPU-Accelerated AI Performance

  • Intel Unveils New GPUs for AI and Workstations at Computex 2025

  • G.SKILL Releases DDR5 Memory Support List for Intel 200S Boost

  • Intel and its partners release BIOS update for Intel 15th Gen to increase performance

  • Intel-AMD new motherboards announced

  • Intel at CES 2025

Latest News

Razer Unveils Raiju V3 Pro
Gaming

Razer Unveils Raiju V3 Pro

Samsung announces Galaxy XR headset
Consumer Electronics

Samsung announces Galaxy XR headset

Leica M EV1 – the first M-Camera with an integrated electronic viewfinder
Cameras

Leica M EV1 – the first M-Camera with an integrated electronic viewfinder

Micron Delivers Industry’s Highest Capacity SOCAMM2 for Low-Power DRAM in the AI Data Center
Enterprise & IT

Micron Delivers Industry’s Highest Capacity SOCAMM2 for Low-Power DRAM in the AI Data Center

KIOXIA launches EXCERIA PLUS G3 and EXCERIA G3 microSD cards for exceptional photography and video performance
Cameras

KIOXIA launches EXCERIA PLUS G3 and EXCERIA G3 microSD cards for exceptional photography and video performance

Popular Reviews

be quiet! Dark Mount Keyboard

be quiet! Dark Mount Keyboard

Terramaster F8-SSD

Terramaster F8-SSD

be quiet! Light Mount Keyboard

be quiet! Light Mount Keyboard

be quiet! Pure Base 501

be quiet! Pure Base 501

Soundpeats Pop Clip

Soundpeats Pop Clip

Akaso 360 Action camera

Akaso 360 Action camera

Dragon Touch Digital Calendar

Dragon Touch Digital Calendar

Noctua NF-A12x25 G2 fans

Noctua NF-A12x25 G2 fans

Main menu

  • Home
  • News
  • Reviews
  • Essays
  • Forum
  • Legacy
  • About
    • Submit News

    • Contact Us
    • Privacy

    • Promotion
    • Advertise

    • RSS Feed
    • Site Map
  • About
  • Privacy
  • Contact Us
  • Promotional Opportunities @ CdrInfo.com
  • Advertise on out site
  • Submit your News to our site
  • RSS Feed