Breaking News

Micron Announces New 2600 NVMe SSD HighPoint Launches Next-Gen External PCIe Gen5 x16 Switching Adapter LG Display Begins Mass Production of Ultimate Gaming OLED Panel with 4th-Generation OLED Technology PlayStation Plus Monthly Games for July 2025 Samsung Releases Smart Monitor M9 With AI-Powered QD-OLED Display

logo

  • Share Us
    • Facebook
    • Twitter
  • Home
  • Home
  • News
  • Reviews
  • Essays
  • Forum
  • Legacy
  • About
    • Submit News

    • Contact Us
    • Privacy

    • Promotion
    • Advertise

    • RSS Feed
    • Site Map

Search form

Researchers Create "Poor-man's q-bit" Device Based on Spintronics That Solves Quantum Problems at Room Temperature

Researchers Create "Poor-man's q-bit" Device Based on Spintronics That Solves Quantum Problems at Room Temperature

Enterprise & IT Sep 19,2019 0

Researchers have created an unconventional spintronics computing scheme harnessing thermal fluctuations and showed a proof-of-concept for probabilistic computing.

Probabilistic computing using probabilistic bits, or p-bits, whose state fluctuates in time between 0 and 1 has analogies to quantum computing that uses superposition of 0 and 1 of quantum bits, or q-bits.

Research groups from Tohoku University and Purdue University developed a spintronics-based p-bit with a stochastic magnetic tunnel junction (s-MTJ) and constructed a rudimentary probabilistic computer inspired by concepts from asynchronous neural networks. Using the developed spintronics probabilistic computer, integer factorization was tested as an illustrative example of optimization problems.

For the operation, a modified algorithm of quantum annealing was applied and up to 4-body interactions were implemented. They succeeded in factorizing 35 into 5 and 7 by 4 p-bits, 161 into 23 and 7 by 6 p-bits, and 945 into 63 and 15 by 8 p-bits.

Quantum computing is expected to execute difficult classes of problems such as optimization that classical computers cannot address efficiently. Whereas most q-bits operate at extremely low temperature and often interact only with neighboring q-bits, the spintronics p-bits can be used like q-bits but operating at room temperature with the ability to correlate, by electrical means, with multiple p-bits even at long distances. In addition, spintronics p-bits can be realized by slightly modifying a matured nonvolatile memory (Magnetoresistive Random Access Memory; MRAM) technology, whose integration densities are well above the megabit range. In this sense, the developed p-bit can be regarded as a "poor man's q-bit."

The demonstrated computing scheme based on spintronics technology is particularly attractive for certain classes of problems where approximate solutions are acceptable, because the probabilistic computer makes use of natural stochasticity of s-MTJ instead of introducing it artificially into a deterministic computer. Compared with quantum computers, the spintronics probabilistic computers are attractive in terms of room-temperature operation, ease of implementing many-body interactions, and maturity of fundamental technology in the MRAM community. In this context, the results shown are promising in that they pave an unexplored pathway towards a new computing paradigm that is particularly well-suited for certain classes of problems like optimization and thus is useful in areas such as drug research, encryption and cybersecurity, financial services, data analysis, and supply chain logistics.

Tags: Tohoku UniversityProbabilistic computingSpintronics computingQuantum computing
Previous Post
CEVA Introduces the NeuPro-S AI Processor for Deep Neural Network Workloads
Next Post
Canon to Release Remote-control for Interchangeable-lens Cameras

Related Posts

  • IBM Expands the Computational Power of its IBM Cloud-Accessible Quantum Computers

  • UK Companies to Build Operating System for Quantum Computers

  • Intel and QuTech Demonstrate High-Fidelity ‘Hot’ Qubits for Practical Quantum Systems

  • D-Wave Provides Free Quantum Cloud Access for Global Response to COVID-19

  • IBM Shows How Archimedes Could Estimate Pi Using a Quantum Computer

  • Infineon, Cypress Deal Wins CFIUS Clearance

  • Honeywell to Develop The World’s Most Powerful Quantum Computer

  • D-Wave Launches New Leap 2 Cloud Service For Quantum App Development

Latest News

Micron Announces New 2600 NVMe SSD
Enterprise & IT

Micron Announces New 2600 NVMe SSD

HighPoint Launches Next-Gen External PCIe Gen5 x16 Switching Adapter
Enterprise & IT

HighPoint Launches Next-Gen External PCIe Gen5 x16 Switching Adapter

LG Display Begins Mass Production of Ultimate Gaming OLED Panel with 4th-Generation OLED Technology
Enterprise & IT

LG Display Begins Mass Production of Ultimate Gaming OLED Panel with 4th-Generation OLED Technology

PlayStation Plus Monthly Games for July 2025
Gaming

PlayStation Plus Monthly Games for July 2025

Samsung Releases Smart Monitor M9 With AI-Powered QD-OLED Display
Enterprise & IT

Samsung Releases Smart Monitor M9 With AI-Powered QD-OLED Display

Popular Reviews

be quiet! Light Loop 360mm

be quiet! Light Loop 360mm

be quiet! Dark Mount Keyboard

be quiet! Dark Mount Keyboard

Arctic Liquid Freezer III 420 - 360

Arctic Liquid Freezer III 420 - 360

be quiet! Light Mount Keyboard

be quiet! Light Mount Keyboard

Soundpeats Pop Clip

Soundpeats Pop Clip

Noctua NH-D15 G2

Noctua NH-D15 G2

Crucial T705 2TB NVME White

Crucial T705 2TB NVME White

be quiet! Light Base 600 LX

be quiet! Light Base 600 LX

Main menu

  • Home
  • News
  • Reviews
  • Essays
  • Forum
  • Legacy
  • About
    • Submit News

    • Contact Us
    • Privacy

    • Promotion
    • Advertise

    • RSS Feed
    • Site Map
  • About
  • Privacy
  • Contact Us
  • Promotional Opportunities @ CdrInfo.com
  • Advertise on out site
  • Submit your News to our site
  • RSS Feed