Breaking News

Viltrox announces AF 85mm F1.4 Pro FE Portrait Lens TerraMaster D4 SSD Unveiled Securing a Future Market Lead Through OLED Technology Differentiation Samsung Launches Onyx Cinema LED Screen for European Market at CineEurope 2025 GAMEMAX Introduces CLAW 360 and CLAW 460 Gaming Cases

logo

  • Share Us
    • Facebook
    • Twitter
  • Home
  • Home
  • News
  • Reviews
  • Essays
  • Forum
  • Legacy
  • About
    • Submit News

    • Contact Us
    • Privacy

    • Promotion
    • Advertise

    • RSS Feed
    • Site Map

Search form

Intel's Silicon Photonics Advancement to Accelerate Future Computing, Communications

Intel's Silicon Photonics Advancement to Accelerate Future Computing, Communications

Enterprise & IT Dec 8,2008 0

Researchers from Intel have de The researchers used a silicon-based Avalanche Photodetector (APD) that could lower costs and improve performance as compared to commercially available optical devices, according to Intel. The research results were published today in Nature Photonics.

The avalanche photodetector (APD) shows the way to designs that could increase the distance or lower power and cost of optical links, Intel said.

Silicon Photonics is an emerging technology using standard silicon to send and receive optical information among computers and other electronic devices. The technology aims to address future bandwidth needs of data-intensive computing applications such as remote medicine and lifelike 3-D virtual worlds.

Ultra-fast transfer of data will be essential for future computers powered by many processor cores. Silicon Photonics-based technology could deliver higher-speed mainstream computing at a lower cost. This advance builds upon previous Intel breakthroughs such as fast silicon modulators and hybrid silicon lasers. Combined, these technologies could lead to the creation of entirely new kinds of digital machines capable of far greater performance than today.

A team led by Intel researchers created the silicon-based APD, a light sensor that achieves superior sensitivity by detecting light and amplifying weak signals as light is directed onto silicon. This APD device used silicon and CMOS processing to achieve a "gain-bandwidth product" of 340 GHz -- the best result ever measured for this key APD performance metric. This opens the door to lower the cost of optical links running at data rates of 40Gbps or higher and proves, for the first time, that a silicon photonics device can exceed the performance of a device made with traditional, more expensive optical materials such as indium phosphide.

"This research result is another example of how silicon can be used to create very high-performing optical devices," said Mario Paniccia, Ph.D., Intel Fellow and director of the company's Photonics Technology Lab. "In addition to optical communication, these silicon-based APDs could also be applied to other areas such as sensing, imaging, quantum cryptography or biological applications."

Intel worked with industry and academic collaborators, and the research was jointly funded by Defense Advanced Research Projects Agency (DARPA). Numonyx, a leading maker of NOR, NAND, RAM and phase change non-volatile memory technologies, provided manufacturing and process expertise. "This achievement is a good example of the effective relationship between Intel and Numonyx," said Yonathan Wand, Numonyx manufacturing vice president and Fab1 plant manager. "We are committed to enhancing this relationship, to enable further breakthroughs in the Silicon Photonics area."

Prof. Joe Campbell of the University of Virginia and Prof. John Bowers of the University of California, Santa Barbara, both APD experts, provided consultation and assisted with testing.

"This APD utilizes the inherently superior characteristics of silicon for high-speed amplification to create world-class optical technology," Bowers said. "We were glad to help characterize these devices and will continue to work with Intel to realize the full potential of silicon photonics devices."

Tags: Intel
Previous Post
Vista Global Usage Share is 21.16 Percent According to OneStat.com
Next Post
Toshiba to Limit NAND Chip Output Due to Weak Demand

Related Posts

  • New Intel Xeon 6 CPUs to Maximize GPU-Accelerated AI Performance

  • Intel Unveils New GPUs for AI and Workstations at Computex 2025

  • G.SKILL Releases DDR5 Memory Support List for Intel 200S Boost

  • Intel and its partners release BIOS update for Intel 15th Gen to increase performance

  • Intel-AMD new motherboards announced

  • Intel at CES 2025

  • Intel Launches Arc B-Series Graphics Cards

  • MSI announces New Claw 8 AI Plus and Claw 7 AI Plus Handheld

Latest News

Viltrox announces AF 85mm F1.4 Pro FE Portrait Lens
Cameras

Viltrox announces AF 85mm F1.4 Pro FE Portrait Lens

TerraMaster D4 SSD Unveiled
Enterprise & IT

TerraMaster D4 SSD Unveiled

Securing a Future Market Lead Through OLED Technology Differentiation
Consumer Electronics

Securing a Future Market Lead Through OLED Technology Differentiation

Samsung Launches Onyx Cinema LED Screen for European Market at CineEurope 2025
Consumer Electronics

Samsung Launches Onyx Cinema LED Screen for European Market at CineEurope 2025

GAMEMAX Introduces CLAW 360 and CLAW 460 Gaming Cases
Cooling Systems

GAMEMAX Introduces CLAW 360 and CLAW 460 Gaming Cases

Popular Reviews

be quiet! Light Loop 360mm

be quiet! Light Loop 360mm

be quiet! Dark Mount Keyboard

be quiet! Dark Mount Keyboard

Arctic Liquid Freezer III 420 - 360

Arctic Liquid Freezer III 420 - 360

be quiet! Light Mount Keyboard

be quiet! Light Mount Keyboard

Soundpeats Pop Clip

Soundpeats Pop Clip

Crucial T705 2TB NVME White

Crucial T705 2TB NVME White

be quiet! Light Base 600 LX

be quiet! Light Base 600 LX

Noctua NH-D15 G2

Noctua NH-D15 G2

Main menu

  • Home
  • News
  • Reviews
  • Essays
  • Forum
  • Legacy
  • About
    • Submit News

    • Contact Us
    • Privacy

    • Promotion
    • Advertise

    • RSS Feed
    • Site Map
  • About
  • Privacy
  • Contact Us
  • Promotional Opportunities @ CdrInfo.com
  • Advertise on out site
  • Submit your News to our site
  • RSS Feed