Breaking News

DJI Breaks Through the Limits of Fixed Aperture with Osmo Action 6 PlayStation’s Black Friday Deals 2025 TerraMaster Black Friday & Cyber Monday 2025 Mega Sale Is Here HighPoint and ASK Corp Redefine 8K Post-Production with Verified 50.5GB/s Gen5 NVMe Storage at Inter BEE 2025 EDIFICE Launches the New ECB-S10 Series

logo

  • Share Us
    • Facebook
    • Twitter
  • Home
  • Home
  • News
  • Reviews
  • Essays
  • Forum
  • Legacy
  • About
    • Submit News

    • Contact Us
    • Privacy

    • Promotion
    • Advertise

    • RSS Feed
    • Site Map

Search form

IBM Researchers Unveil Nanotechnology Circuits for Wireless Devices

IBM Researchers Unveil Nanotechnology Circuits for Wireless Devices

Enterprise & IT Jun 10,2011 0

IBM Research scientists have achieved a milestone in creating a building block for the future of wireless devices. In a paper published yesterday in the magazine Science, IBM researchers announced the first integrated circuit fabricated from wafer-size graphene, and demonstrated a broadband frequency mixer operating at frequencies up to 10 gigahertz. Designed for wireless communications, this graphene-based analog integrated circuit could improve today's wireless devices and points to the potential for a new set of applications. At today's conventional frequencies, cell phone and transceiver signals could be improved, potentially allowing phones to work where they can't today while, at much higher frequencies, military and medical personnel could see concealed weapons or conduct medical imaging without the same radiation dangers of X-rays.

Graphene, the thinnest electronic material consisting of a single layer of carbon atoms packed in a honeycomb structure, possesses outstanding electrical, optical, mechanical and thermal properties that could make it less expensive and use less energy inside portable electronics like smart phones.

Despite significant scientific progress in the understanding of this material and the demonstration of high-performance graphene-based devices, the challenge of integrating graphene transistors with other components on a single chip had not been realized until now, mostly due to poor adhesion of graphene with metals and oxides and the lack of reliable fabrication schemes to yield reproducible devices and circuits.

This new integrated circuit, consisting of a graphene transistor and a pair of inductors compactly integrated on a silicon carbide (SiC) wafer, overcomes these design hurdles by developing wafer-scale fabrication procedures that maintain the quality of graphene and, at the same time, allow for its integration to other components in a complex circuitry.

"Just a few days before IBM commemorates its 100th anniversary, our scientists have achieved a nanotechnology milestone which continues the company's century-long pursuit of innovation and technology leadership," said T.C. Chen, vice president, Science and Technology, IBM Research. "This research breakthrough has the potential to increase the performance of communication devices that enable people to interact with greater efficiency."

The breakthrough is also a major milestone for the Carbon Electronics for RF Applications (CERA) program, funded by DARPA.

In this demonstration, graphene is synthesized by thermal annealing of SiC wafers to form uniform graphene layers on the surface of SiC. The fabrication of graphene circuits involves four layers of metal and two layers of oxide to form top-gated graphene transistor, on-chip inductors and interconnects.

The circuit operates as a broadband frequency mixer, which produces output signals with mixed frequencies (sum and difference) of the input signals. Mixers are fundamental components of many electronic communication systems. Frequency mixing up to 10 GHz and excellent thermal stability up to 125 degrees C has been demonstrated with the graphene integrated circuit.

The fabrication scheme developed can also be applied to other types of graphene materials, including chemical vapor deposited (CVD) graphene films synthesized on metal films, and are also compatible with optical lithography for reduced cost and throughput.

Previously, the team has demonstrated standalone graphene transistors with a cut-off frequency as high as 100 GHz and 155 GHz for epitaxial and CVD graphene, for a gate length of 240 and 40 nm, respectively.

Tags: IBMnanotechnology
Previous Post
Sony Delivers New 3D Front Projector
Next Post
Intel, Samsung and Toshiba Continue to Lead The Semiconductor Market

Related Posts

  • IBM and AMD Join Forces to Build the Future of Computing

  • IBM Unveils watsonx Generative AI Capabilities to Accelerate Mainframe Application Modernization

  • New magnetic tape prototype breaks data density and capacity records

  • IBM Expands the Computational Power of its IBM Cloud-Accessible Quantum Computers

  • Researchers Use Analog AI hardware to Support Deep Learning Inference Without Great Accuracy

  • Server Market Posts a Record First Quarter on Strong Cloud-service Demand

  • IBM Wants to Change IT Operations With Watson AIOps, Releses Edge Computing Solutions for 5G Deployments 5G era

  • IBM Reports Continued Cloud Revenue Growth, Withdraws Annual Forecast

Latest News

DJI Breaks Through the Limits of Fixed Aperture with Osmo Action 6
Cameras

DJI Breaks Through the Limits of Fixed Aperture with Osmo Action 6

PlayStation’s Black Friday Deals 2025
Gaming

PlayStation’s Black Friday Deals 2025

TerraMaster Black Friday & Cyber Monday 2025 Mega Sale Is Here
Enterprise & IT

TerraMaster Black Friday & Cyber Monday 2025 Mega Sale Is Here

HighPoint and ASK Corp Redefine 8K Post-Production with Verified 50.5GB/s Gen5 NVMe Storage at Inter BEE 2025
Enterprise & IT

HighPoint and ASK Corp Redefine 8K Post-Production with Verified 50.5GB/s Gen5 NVMe Storage at Inter BEE 2025

EDIFICE Launches the New ECB-S10 Series
Consumer Electronics

EDIFICE Launches the New ECB-S10 Series

Popular Reviews

be quiet! Dark Mount Keyboard

be quiet! Dark Mount Keyboard

Terramaster F8-SSD

Terramaster F8-SSD

be quiet! Light Mount Keyboard

be quiet! Light Mount Keyboard

Soundpeats Pop Clip

Soundpeats Pop Clip

Akaso 360 Action camera

Akaso 360 Action camera

Dragon Touch Digital Calendar

Dragon Touch Digital Calendar

Noctua NF-A12x25 G2 fans

Noctua NF-A12x25 G2 fans

be quiet! Pure Loop 3 280mm

be quiet! Pure Loop 3 280mm

Main menu

  • Home
  • News
  • Reviews
  • Essays
  • Forum
  • Legacy
  • About
    • Submit News

    • Contact Us
    • Privacy

    • Promotion
    • Advertise

    • RSS Feed
    • Site Map
  • About
  • Privacy
  • Contact Us
  • Promotional Opportunities @ CdrInfo.com
  • Advertise on out site
  • Submit your News to our site
  • RSS Feed