Breaking News

ZOTAC to Showcase New Graphics Card Models, Handheld Consoles, and AI-accelerated Systems at COMPUTEX 2025 ZHIYUN Launches CINEPEER SMOOTH 5E Mainstream Smartphone Gimbal xMEMS Unveils Sycamore-W – The World’s Thinnest Speaker Engineered for Smart Watches and Fitness Bands Samsung announces Galaxy S25 Edge DJI announces Mavic 4 Pro

logo

  • Share Us
    • Facebook
    • Twitter
  • Home
  • Home
  • News
  • Reviews
  • Essays
  • Forum
  • Legacy
  • About
    • Submit News

    • Contact Us
    • Privacy

    • Promotion
    • Advertise

    • RSS Feed
    • Site Map

Search form

MIT Researchers Unveil Practical New Approach To Holographic Video

MIT Researchers Unveil Practical New Approach To Holographic Video

Enterprise & IT Jun 19,2013 0

Researchers at MIT's Media Lab reported a new approach to generating holograms that could lead to color holographic-video displays that are much cheaper to manufacture than today?s experimental, monochromatic displays. Using the new technique, Daniel Smalley, a graduate student in the Media Lab, is building a prototype color holographic-video display whose resolution is roughly that of a standard-definition TV and which can update video images 30 times a second, fast enough to produce the illusion of motion. The heart of the display is an optical chip, resembling a microscope slide, that Smalley built, using only MIT facilities, for about $10.

When light strikes an object with an irregular surface, it bounces off at a huge variety of angles, so that different aspects of the object are disclosed when it?s viewed from different perspectives. In a hologram, a beam of light passes through a so-called diffraction fringe, which bends the light so that it, too, emerges at a host of different angles.

One way to produce holographic video is to create diffraction fringes from patterns displayed on an otherwise transparent screen. The problem with that approach is that the pixels of the diffraction pattern have to be as small as the wavelength of the light they?re bending, and most display technologies don?t happily shrink down that much.

Stephen Benton, a Media Lab professor, created one of the first holographic-video displays by adopting a different technique, called acousto-optic modulation, in which precisely engineered sound waves are sent through a piece of transparent material. "The waves basically squeeze and stretch the material, and they change its index of refraction," says Michael Bove, a principal research scientist at the Media Lab and head of its Object-Based Media GroupBove. "So if you shine a laser through it, [the waves] diffract it."

Benton's most sophisticated display , which was built with the help of Bove's group - applied acousto-optic modulation to a crystal of an expensive material called tellurium dioxide. "That was the biggest piece of tellurium dioxide crystal that had ever been grown," Bove says. "And that wasn't TV resolution. So there was a definite scaling problem going on there."

Smalley instead used a much smaller crystal of a material called lithium niobate. Just beneath the surface of the crystal he creates microscopic channels known as waveguides, which confine the light traveling through them. Onto each waveguide, he also deposits a metal electrode, which can produce an acoustic wave.



Each waveguide corresponds to one row of pixels in the final image. In the Mark-II, the tellurium dioxide crystal had to be big enough that the acoustic waves producing the separate lines of the hologram were insulated from each other. In Smalley's chip, on the other hand, the waveguides with their individual electrodes can be packed mere micrometers apart from each other.

Beams of red, green and blue light are sent down each waveguide, and the frequencies of the acoustic wave passing through the crystal determine which colors pass through and which are filtered out. Combining, say, red and blue to produce purple doesn't require a separate waveguide for each color; it just requires a different acoustic-wave pattern.

Bove considers that the most exciting aspect of the new chip. "Until now, if you wanted to make a light modulator for a video projector, or an LCD panel for a TV, or something like that, you had to deal with the red light, the green light and the blue light separately," he says. "If you look closely at an LCD panel, each pixel actually has three little color filters in it. There?s a red subpixel, a green subpixel and a blue subpixel."

Bove's group is currently in talks with the lab?s corporate members about acquiring the chip's technology. As a note, MIT's lab corporate members include LG Electronics and Samsung Electronics.

Tags:
Previous Post
Toshiba Introduces 7mm Solid State Hybrid Drive
Next Post
LG Confirms Flexible Displays For Smartphones Coming Next Year

Related Posts

Latest News

ZOTAC to Showcase New Graphics Card Models, Handheld Consoles, and AI-accelerated Systems at COMPUTEX 2025
GPUs

ZOTAC to Showcase New Graphics Card Models, Handheld Consoles, and AI-accelerated Systems at COMPUTEX 2025

ZHIYUN Launches CINEPEER SMOOTH 5E Mainstream Smartphone Gimbal
Cameras

ZHIYUN Launches CINEPEER SMOOTH 5E Mainstream Smartphone Gimbal

xMEMS Unveils Sycamore-W – The World’s Thinnest Speaker Engineered for Smart Watches and Fitness Bands
Enterprise & IT

xMEMS Unveils Sycamore-W – The World’s Thinnest Speaker Engineered for Smart Watches and Fitness Bands

Samsung announces Galaxy S25 Edge
Smartphones

Samsung announces Galaxy S25 Edge

DJI announces Mavic 4 Pro
Drones

DJI announces Mavic 4 Pro

Popular Reviews

be quiet! Light Loop 360mm

be quiet! Light Loop 360mm

be quiet! Dark Rock 5

be quiet! Dark Rock 5

be quiet! Dark Mount Keyboard

be quiet! Dark Mount Keyboard

G.skill Trident Z5 Neo RGB DDR5-6000 64GB CL30

G.skill Trident Z5 Neo RGB DDR5-6000 64GB CL30

Arctic Liquid Freezer III 420 - 360

Arctic Liquid Freezer III 420 - 360

Crucial Pro OC 32GB DDR5-6000 CL36 White

Crucial Pro OC 32GB DDR5-6000 CL36 White

Crucial T705 2TB NVME White

Crucial T705 2TB NVME White

be quiet! Light Base 600 LX

be quiet! Light Base 600 LX

Main menu

  • Home
  • News
  • Reviews
  • Essays
  • Forum
  • Legacy
  • About
    • Submit News

    • Contact Us
    • Privacy

    • Promotion
    • Advertise

    • RSS Feed
    • Site Map
  • About
  • Privacy
  • Contact Us
  • Promotional Opportunities @ CdrInfo.com
  • Advertise on out site
  • Submit your News to our site
  • RSS Feed