Breaking News

Noctua introduces NF-A12x25 G2 next-generation 120mm fan INNO3D DELIVERS HIGH PERFORMANCE FOR LESS WITH THE NEW GEFORCE RTX 5050 CORSAIR Unveils RS-R Fans with Reverse Rotors for Unobstructed RGB Lighting ATP Electronics 11K Cycles PCIe Gen 4x4 Industrial SSDs TerraMaster Launches F4 SSD

logo

  • Share Us
    • Facebook
    • Twitter
  • Home
  • Home
  • News
  • Reviews
  • Essays
  • Forum
  • Legacy
  • About
    • Submit News

    • Contact Us
    • Privacy

    • Promotion
    • Advertise

    • RSS Feed
    • Site Map

Search form

Sony Develops Wireless Intra-Connection 
Technology for Internal High Speed Data Transfer within Electronics Products

Sony Develops Wireless Intra-Connection Technology for Internal High Speed Data Transfer within Electronics Products

Consumer Electronics Feb 8,2010 0

Sony today announced the development of millimeter-wave wireless intra-connection technology that realizes 11Gbps wireless data transfer inside electronic products such as television sets. By replacing complicated wires and internal circuitry with wireless connections, this technology enables a reduction in the size and cost of the IC and other components used in electronics products, delivering advantages such as size and cost-reduction and reliability of the final product.

Once wired connections approach the limit of their data capacity, additional circuitry is required to facilitate larger data transfers, however this leads to the issue of increasingly complicated IC packages, intricately printed circuit boards, and larger IC sizes.

Sony's new wireless intra-connection system is based on millimeter-wave wireless data transfer technology. Millimeter-wave refers to electromagnetic waves with a frequency of 30GHz to 300GHz, and wavelength between 1mm to 10mm. With their high frequency, millimeter-waves are suited to ultra high speed data transfer, while a further advantage is their ability to transfer data using only very small antennas. Sony has integrated highly energy efficient millimeter-wave circuits on 40nm-CMOS-LSIs (with an active footprint of just 0.13mm2 including both the transmitter and receiver), to realize high speed, 11Gbps data transfer over a distance of 14mm using antennas approximately 1mm in size.

By replacing physical circuitry in electronics products with high speed wireless connections, this new data transfer technology reduces the number of wired connections and minimizes IC use, to simplify the IC package and printed circuit board. Furthermore, because the data transfer occurs without contact, this enhances the reliability of movable and detachable parts within the product.

Sony's technology will be presented at "ISSCC 2010", to be held in San Francisco, California, US, from February 7th 2010.

Key Features

1. Optimized circuit for intra-connection on CMOS-LSIs
Sony has drawn on its years of experience in radio frequency technologies to realize compact, low power, millimeter-wave circuits optimal for use in intra-connection over CMOS-LSIs. Due to the small footprint of just 0.13mm2 the circuits can be built into a single chip, at very low cost.

2. Injection lock method realizes small size, low power consumption and sufficient transmission range for intra-connection.
Synchronized detection, which aligns the receiver with the transmitted carrier frequency, is an effective means of providing sufficient transmission range for intra-connection, while also ensuring low power consumption. However, the PLL (Phase Locked Loop) generally used for this synchronization has the disadvantage of requiring large, power-consuming circuitry to transmit at millimeter-wave frequency. By adopting an injection lock system that eliminates PLL, Sony has enabled synchronized detection over small size circuits, while also minimizing power consumption and providing sufficient transmission range for successful intra-connection.

This technology, used together with miniature antennas approximately 1mm in length, enable transmission speeds of 11Gbps over a distance of 14mm, with power consumption of 70mW. It is possible for this distance to be extended to around 50mm using high directivity antennas.

Tags: Sony
Previous Post
Sharp and Samsung Reach Settlement in LCD Patent Infringement Disputes
Next Post
Intel, AMD, Sun and IBM Talk About 16- and 48-Core Chips

Related Posts

  • Sony introduces the FX2 compact camera

  • Celebrate Days of Play 2025 starting on May 28

  • Sony introduces WH-1000XM6

  • Sony Introduces Xperia 1 VII

  • Sony announces DualSense wireless controller for Death Stranding 2

  • Sony announces that PS5 price will rise in Europe, Australia and New Zealand

  • Sony expands its BRAVIA 2025 TV line-up

  • Sony Announces the WF-C710N Truly Wireless Noise Cancelling Earbuds

Latest News

Noctua introduces NF-A12x25 G2 next-generation 120mm fan
Cooling Systems

Noctua introduces NF-A12x25 G2 next-generation 120mm fan

INNO3D DELIVERS HIGH PERFORMANCE FOR LESS  WITH THE NEW GEFORCE RTX 5050
GPUs

INNO3D DELIVERS HIGH PERFORMANCE FOR LESS WITH THE NEW GEFORCE RTX 5050

CORSAIR Unveils RS-R Fans with Reverse Rotors for Unobstructed RGB Lighting
Cooling Systems

CORSAIR Unveils RS-R Fans with Reverse Rotors for Unobstructed RGB Lighting

ATP Electronics 11K Cycles PCIe Gen 4x4 Industrial SSDs
Enterprise & IT

ATP Electronics 11K Cycles PCIe Gen 4x4 Industrial SSDs

TerraMaster Launches F4 SSD
Enterprise & IT

TerraMaster Launches F4 SSD

Popular Reviews

be quiet! Light Loop 360mm

be quiet! Light Loop 360mm

be quiet! Dark Mount Keyboard

be quiet! Dark Mount Keyboard

Arctic Liquid Freezer III 420 - 360

Arctic Liquid Freezer III 420 - 360

be quiet! Light Mount Keyboard

be quiet! Light Mount Keyboard

Soundpeats Pop Clip

Soundpeats Pop Clip

Crucial T705 2TB NVME White

Crucial T705 2TB NVME White

be quiet! Light Base 600 LX

be quiet! Light Base 600 LX

Noctua NH-D15 G2

Noctua NH-D15 G2

Main menu

  • Home
  • News
  • Reviews
  • Essays
  • Forum
  • Legacy
  • About
    • Submit News

    • Contact Us
    • Privacy

    • Promotion
    • Advertise

    • RSS Feed
    • Site Map
  • About
  • Privacy
  • Contact Us
  • Promotional Opportunities @ CdrInfo.com
  • Advertise on out site
  • Submit your News to our site
  • RSS Feed